materialsscienceandengineering:
Promising new cathode material to enhance battery life
Nowadays Li-ion batteries power a wide range of electronic devices: mobile phones, tablets, laptops. They became popular in 90s and subsequently ousted widespread nickel-metal hydride batteries.
However, Li-ion batteries suffer a number of disadvantages. For example, their capacity may drop when temperature falls below zero. The price is also inhibitory due to the use of expensive lithium-containing materials—for example, Li-ion batteries are responsible for about half of the cost of the electric Tesla Model S vehicle. However, Li-ion batteries are compact, easy to use and high capacity, offering long performance from relatively small batteries.
One limiting factor of Li-ion batteries is the cathode, as capacity limits for most cathode materials have been reached. Hence, scientists and engineers are actively searching for new cathode materials capable of recharging completely within minutes, operating under high current densities, and storing more energy.
One of the most promising candidates for next-generation cathode materials is fluoride-phosphates of transition metals.
The work, directed by Prof. Evgeny Antipov, was conducted by a team of MSU research scientists together with their Russian and Belgian colleagues. It was devoted to the creation of a new, high-power cathode material based on a fluoride-phosphate of vanadium and potassium for Li-ion batteries. The results were published in Chemistry of Materials.
Yay, battery chemistry!
via Tumblr http://bit.ly/1X0cIe5
No comments:
Post a Comment